Contribution of regulation by the bvg locus to respiratory infection of mice by Bordetella pertussis.

نویسندگان

  • T J Merkel
  • S Stibitz
  • J M Keith
  • M Leef
  • R Shahin
چکیده

Whooping cough is an acute respiratory disease caused by the small, gram-negative bacterium Bordetella pertussis. B. pertussis expresses several factors that contribute to its ability to cause disease. These factors include surface-associated molecules, which are involved in the adherence of the organism to respiratory epithelial cells, as well as several extracellular toxins that inhibit host defenses and induce damage to host tissues. The expression of virulence factors in B. pertussis is dependent upon the bvg locus, which consists of three genes: bvgA, bvgS, and bvgR. The bvgAS genes encode a two-component regulatory system consisting of a sensor protein, BvgS, and a transcriptional activator, BvgA. Upon modification by BvgS, BvgA binds to the promoter regions of the bvg-activated genes and activates transcription. One of the bvg-activated genes, bvgR, is responsible for the regulation of the bvg-repressed genes, the functions of which are unknown. The fact that these genes are regulated by the bvg locus suggests that they play a role in the pathogenesis of the bacterium. In order to evaluate the contribution of bvg-mediated regulation to the virulence of B. pertussis and determine if expression of the bvg-repressed genes is required for the virulence of B. pertussis, we examined the ability of B. pertussis mutants, defective in their ability to regulate the expression of the bvg-activated and/or the bvg-repressed genes, to cause disease in the mouse aerosol challenge model. Our results indicate that the bvgR-mediated regulation of gene expression contributes to respiratory infection of mice.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Neither the Bvg- phase nor the vrg6 locus of Bordetella pertussis is required for respiratory infection in mice.

In Bordetella species, the BvgAS sensory transduction system mediates an alteration between the Bvg+ phase, characterized by expression of adhesins and toxins, and the Bvg- phase, characterized by the expression of motility and coregulated phenotypes in Bordetella bronchiseptica and by the expression of vrg loci in Bordetella pertussis. Since there is no known environmental or animal reservoir ...

متن کامل

Differential regulation of Bvg-activated virulence factors plays a role in Bordetella pertussis pathogenicity.

Bordetella pertussis, the causative agent of whooping cough, regulates expression of many virulence factors via a two-component signal transduction system encoded by the bvgAS regulatory locus. It has been shown by transcription activation kinetics that several of the virulence factors are differentially regulated. fha is transcribed within 10 min following a bvgAS-inducing signal, while prn is...

متن کامل

Evaluation of the role of the Bvg intermediate phase in Bordetella pertussis during experimental respiratory infection.

The BvgAS system of Bordetella pertussis was traditionally considered to mediate a transition between two phenotypic phases (Bvg(+) and Bvg(-)) in response to environmental signals. We characterized a third state, the intermediate (Bvg(i)) phase, which can be induced by introducing a 1-bp substitution into bvgS (the bvgS-I1 mutation) or by growing B. pertussis under conditions intermediate betw...

متن کامل

Regulation of pertussis toxin and lipopolysaccharide levels of Bordetella pertussis 134 in response to modulators

  Whooping cough (pertussis) is a highly contagious disease of the human respiratory tract, which is caused by Bordetella pertussis. Reemerge of pertussis in some highly immunized populations and divergency in gene order among several B. pertussis strains promoted this research to study the change of pertussis toxin (PT) and lipopolysacharide levels in response to the different environments. Th...

متن کامل

A phase variant of Bordetella pertussis with a mutation in a new locus involved in the regulation of pertussis toxin and adenylate cyclase toxin expression.

A novel nonhemolytic phase variant of Bordetella pertussis was characterized. This strain is strongly impaired in the transcription of the pertussis and adenylate cyclase toxins, whereas other known virulence-related factors such as the filamentous hemagglutinin, the fimbriae, and the outer membrane protein pertactin are expressed and regulated normally. Complementation and allelic exchange exp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Infection and immunity

دوره 66 9  شماره 

صفحات  -

تاریخ انتشار 1998